Waves in more than one dimension

$26^{\text {TH }}$ OCTOBER 2020

Plane wave representation in two and three dimensions

-Basically, the plane wave representation moving in one dimension may be written as

$$
E=E_{0} e^{i(\omega t-k x)}
$$

${ }^{\circ}$ Consider the argument representing the phase ;i.e., $\omega t-k x$, the term $k x$ illustrates the phase shift due to the wave displacement along the propagation direction where the wave number $k=2 \pi / \lambda$.
-What should this term be modified to if the plane wave propagates in two or three dimensions?
-To modify this term, the direction cosine has to be discussed.!

Direction cosine

- By definition, the direction cosine or directional cosine of a vector is a cosine of the angle between the vector and the three coordinate axes.
- According to the left picture, the direction cosine of the wave vector k are composed of $\cos \alpha=k_{1} / k$ and $\cos \beta=k_{2} / k$
- $\quad \operatorname{Cos} \alpha$ and $\cos \beta$ are represented by l and m, respectively.
- "lx $+m y=\mathrm{p}$ " represents the line equation in two dimensions where p is the perpendicular distance from the line to the origin.

Modified phase representation

-The phase difference ϕ between the origin and a given line as seen from the figure in previous slide can be written as

$$
\begin{aligned}
& \phi=\frac{2 \pi}{\lambda}(\text { path difference })=\frac{2 \pi}{\lambda} p=\frac{2 \pi}{\lambda}(l x+m y) \\
&=\frac{2 \pi}{\lambda}((\cos \alpha) x+(\cos \beta) y) \\
&=k_{1} x+k_{2} y \\
&=\vec{k} \cdot \vec{r} ; \text { where } \vec{k}=k_{1} \hat{i}+k_{2} \hat{j}, \vec{r}=x \hat{i}+y \hat{j} \\
& \text { and } k^{2}=k_{1}^{2}+k_{2}^{2}
\end{aligned}
$$

$$
\therefore \phi=\frac{2 \pi}{\lambda}\left(k_{1} x+k_{2} y\right)
$$

Plane wave representation in 2 and 3 D

-Therefore, the plane wave representation moving in 2 and 3 D can be written as

$$
\begin{aligned}
& E=E_{0} e^{i\left(\omega t-\left(k_{1} x+k_{2} y\right)\right)} ; 2 \mathrm{D} \\
& E=E_{0} e^{i\left(\omega t-\left(k_{1} x+k_{2} y+k_{3} z\right)\right)} ; 3 \mathrm{D}
\end{aligned}
$$

Equation of motion in two dimensions : Rectangular membrane

-Consider the rectangular membrane of a uniform membrane vibrating in the z -direction.

(a)

(b)

- Area of the membrane $=\delta x \delta y$. The mass of the membrane is given as $\rho \delta x \delta y$.
-Restoring forces acting on length δx and δy are given as $\mathrm{T} \delta \mathrm{y}$ and $\mathrm{T} \delta \mathrm{x}$
-The equation of motion for the membrane is found to be
$T \delta y \frac{\partial^{2} z}{\partial x^{2}} \delta x+T \delta x \frac{\partial^{2} z}{\partial y^{2}} \delta y=\rho \delta x \delta y \frac{\partial^{2} z}{\partial t^{2}}$

Wave equation and corresponding wave function in two dimension : Rectangular membrane

$$
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=\frac{\rho}{T} \frac{\partial^{2} z}{\partial t^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}
$$

-Wave function that satisfies the wave equation is given as

$$
\begin{aligned}
& z=A e^{i[\omega t-(\vec{k} \cdot \vec{r})]}=A e^{i\left[\omega t-\left(k_{1} x+k_{2} y\right)\right]} \\
& \text { where } k^{2}=k_{1}^{2}+k_{2}^{2}
\end{aligned}
$$

-The wave function represents the plane wave propagating in the xy plane.

Normal modes and the method of Separation of variables

-What we are interested here is the wave function of the standing waves on the rectangular membrane.
-The standing waves will be called normal modes for the rectangular membrane.
-This can be found by introducing the boundary conditions at both sides of the rectangular membrane.
-However, to clarify the method, the analytical procedure will begin with one dimensional standing wave happening on the string fixed at both ends.

Wave function for one-dimensional case with boundary conditions

-The boundary conditions for the string fixed at both ends: displacement $\phi=0$ at $\mathrm{x}=$ 0 and $\mathrm{x}=\mathrm{L}$ at all times.

- The wave equation is given as

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}
$$

- By using the method of separation of variable,

$$
\phi=\left\{\begin{array}{l}
\sin k x \cos c k t \\
\sin k x \sin c k t
\end{array} \quad\right. \text { Wave function of standing wave }
$$

Problem

Determine the wave function and the normal modes of vibration for the standing wave of a string fixed at both ends using the method of separation of variable.

Given that the boundary conditions : $\phi=0$ at $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$ at all times.

Wave function for one-dimensional case without boundary conditions

-With the method of separation of variable, the solution of the following wave function

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} z}{\partial t^{2}}
$$

are found to be

$$
\phi=X(x) T(t)=A e^{ \pm i k x} e^{ \pm i c k t}
$$

- A familiar form of the above function may be written as

$$
\begin{gathered}
\phi=A e^{i(c k t-k x)}=A e^{i(\omega t-k x)} \\
\left.\left.\phi=A \cos _{\sin }^{\cos }\right\} k x \begin{array}{c}
\sin \\
\cos
\end{array}\right\} c k t
\end{gathered}
$$

Wave function for two-dimensional case

- Under this circumstance, the wave equation is given as

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}
$$

-Now, the function ϕ may be written as the product of $\mathrm{X}(\mathrm{x}) \mathrm{Y}(\mathrm{y}) \mathrm{T}(\mathrm{t})$.
-With the method of separation of variable, a solution of the differential equation may be written as

$$
\phi=A e^{ \pm i k_{1} x} e^{ \pm i k_{2} y} e^{ \pm i c k t} ; \text { where } k^{2}=k_{1}^{2}+k_{2}^{2}
$$

- Also the solution may be given as

$$
\left.\left.\left.\phi=A \begin{array}{c}
\sin \\
\cos
\end{array}\right\} k_{1} x \sin _{\sin }^{\sin }\right\} k_{2} y \begin{array}{c}
\sin \\
\cos
\end{array}\right\} c k t
$$

Wave function for three-dimensional case

- Under this circumstance, the wave equation is given as

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} \phi}{\partial t^{2}}
$$

-Now, the function ϕ may be written as the product of $\mathrm{X}(\mathrm{x}) \mathrm{Y}(\mathrm{y}) \mathrm{Z}(\mathrm{z}) \mathrm{T}(\mathrm{t})$.
-With the method of separation of variable, a solution of the differential equation may be written as

$$
\phi=A e^{ \pm i k_{1} x} e^{ \pm i k_{2} y} e^{ \pm i k_{3} z} e^{ \pm i c k t} ; \text { where } k^{2}=k_{1}^{2}+k_{2}^{2}+k_{3}^{2}
$$

-Also the solution may be given as

$$
\left.\left.\left.\left.\phi=A \cos _{\sin }\right\} k_{1} x \begin{array}{c}
\sin \\
\cos
\end{array}\right\} k_{2} y \begin{array}{c}
\sin \\
\cos
\end{array}\right\} k_{3} z \begin{array}{c}
\sin \\
\cos
\end{array}\right\} c k t
$$

Normal modes in two dimensions on a rectangular membrane

- Consider waves proceed in a direction k on the rectangular membrane of sides a and b.
-Separation distance between each dotted line is $\lambda / 2$.
${ }^{\circ}$ Conditions for the existence of standing waves are $a=\mathrm{n}_{1} \mathrm{AA}^{\prime}$ and $b=\mathrm{n}_{2} \mathrm{BB}^{\prime}$, where n_{1} and n_{2} are integers.
-From the figure

$$
A A^{\prime}=\frac{\lambda}{2 \cos \alpha}=\frac{\lambda}{2} \frac{k}{k_{1}}=\frac{\lambda}{2} \frac{2 \pi}{\lambda} \frac{1}{k_{1}}=\frac{\pi}{k_{1}}
$$

From definition of the directional cosine

- From the previous slide, $k_{1}=\frac{n_{1} \pi}{a}, k_{2}=\frac{n_{2} \pi}{b}$
- This gives

$$
k^{2}=k_{1}^{2}+k_{2}^{2}=\frac{4 \pi^{2}}{\lambda^{2}}=\pi^{2}\left(\frac{n_{1}^{2}}{a^{2}}+\frac{n_{2}^{2}}{b^{2}}\right)
$$

- Or

$$
\frac{2}{\lambda}=\sqrt{\frac{n_{1}^{2}}{a^{2}}+\frac{n_{2}^{2}}{b^{2}}}
$$

- The normal mode (vibrating frequency) of the vibrating rectangular membrane can be written as

$$
v=\frac{c}{2} \sqrt{\frac{n_{1}^{2}}{a^{2}}+\frac{n_{2}^{2}}{b^{2}}} ; \text { where } c^{2}=\frac{T}{\rho}
$$

Wave function in two dimensions on a rectangular membrane

-Recall the general wave function in 2 D ,

Direction of displacement

$$
\left.\left.\left.z=A \begin{array}{c}
\sin \\
\cos
\end{array}\right\} k_{1} x \begin{array}{c}
\sin \\
\cos
\end{array}\right\} k_{2} y \sin _{\cos }^{\sin }\right\} c k t
$$

-For a particular wave function that satisfies the rectangular membrane, the boundary conditions have to be considered.

- Boundary conditions $: \mathrm{z}=0$ at $\mathrm{x}=0$ and $a ; \mathrm{z}=0$ at $\mathrm{y}=0$ and b.
-So that

$$
z=A \sin \frac{n_{1} \pi x}{a} \sin \frac{n_{2} \pi y}{b} \sin c k t
$$

Fundamental vibration frequency and conditions for nodal lines

-Recall the general normal mode frequency,

$$
v=\sqrt{\left(\frac{n_{1}^{2}}{a^{2}}+\frac{n_{2}^{2}}{b^{2}}\right) \frac{T}{4 \rho}}
$$

\bullet The fundamental vibration frequency is given by $n_{1}=n_{2}=1$,

$$
v=\sqrt{\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \frac{T}{4 \rho}}
$$

-Conditions for nodal lines or zero displacement in the general mode $\left(\mathrm{n}_{1} \mathrm{n}_{2}\right)$

$$
\begin{aligned}
& x=0, \frac{a}{n_{1}}, \frac{2 a}{n_{1}}, \ldots, a \\
& y=0, \frac{b}{n_{2}}, \frac{2 b}{n_{2}}, \ldots, b
\end{aligned}
$$

$(3,2)$

$(3,3)$

$(2,4)$

$(1,1)$

$(3,1)$

Some normal modes on a rectangular membrane

Identify the normal modes on this rectangular membrane

For more animation please visit
https://www.acs.psu.edu/drussell/Demos/rect-membrane/rect-mem.html

Degenerate mode for a square membrane

The (2,1) and (1,2) Modes

Waveguides

-Now, consider a 2D wave propagating in a direction k in the xy plane along a membrane of width b stretched under a tension T between two long rigid rods which present and infinite impedance to the wave.

The displacement z is given by the superposition of the incident and reflected waves (why?),

$$
\begin{aligned}
z= & A_{1} e^{i\left[\omega t-\left(k_{1} x+k_{2} y\right)\right]} \\
& +A_{2} e^{i\left[\omega t-\left(k_{1} x-k_{2} y\right)\right]}
\end{aligned}
$$

Displacement of the wave on the membrane

\cdot Recall the superposition from the previous slide, $\quad z=A_{1} e^{i\left[\omega t-\left(k_{1} x+k_{2} y\right)\right]}+A_{2} e^{i\left[\omega t-\left(k_{1} x-k_{2} y\right)\right]}$ -Consider the boundary conditions $: \mathrm{z}=0$ at $\mathrm{y}=0$ and $\mathrm{y}=\mathrm{b}$ (the positions of infinite impedance).
-This gives $\mathrm{A}_{2}=-\mathrm{A}_{1}$ and $\sin k_{2} b=0$ which leads to $k_{2}=n \pi / b$.
-Therefore, the displacement of the wave on the membrane given by the real part becomes

$$
z=
$$

Varying amplitude

Travelling wave

-The function represents a wave travelling along the \mathbf{x} direction with varying amplitude along y direction.

What is the phase velocity of the travelling wave?

-Consider the travelling wave on the membrane from previous slide

$$
z=+2 A_{1} \sin k_{2} y \sin \left(\omega t-k_{1} x\right)
$$

-The phase velocity of the wave is given as

$$
v_{p}=\frac{\omega}{k_{1}}=\left(\frac{k}{k_{1}}\right) v ; \text { where } v \text { is the velocity of a wave on an infinitely membrane }
$$

-Because $k^{2}=k_{1}^{2}+k_{2}^{2}$, this can be rewritten as $k_{1}^{2}=k^{2}-\frac{n^{2} \pi^{2}}{b^{2}}$

- Since k_{1} must be real for the wave to propagate, thus $\quad k^{2} \geq \frac{n^{2} \pi^{2}}{b^{2}}$

Allowed frequencies of travelling wave

-From the condition $\quad k^{2} \geq \frac{n^{2} \pi^{2}}{b^{2}} \quad$ and $\quad k=\frac{\omega}{v}$
-The allowed frequencies of travelling wave propagating along the membrane is found to be

$$
v \geq \frac{n v}{2 b}
$$

This also represent a cut-off frequency for each mode number n indicating that the waveguide acting as a frequency filter.
-Where n defines the mode number in the y direction and the membrane acts as a waveguide.

Waveguide membrane

$z=+2 A_{1} \sin k_{2} y \sin \left(\omega t-k_{1} x\right)$

Variation of amplitude with y direction for two dimensional wave propagating along the membrane. Normal modes ($n=1,2$ and 3 are shown) are set up along any axis bounded by infinite impedances.

Slab Waveguides

- Consider a dielectric slab of thickness 2a and refractive index n_{1}
- Let the dielectric be sandwiched between two semi-infinite regions of index n_{2}
- Note that $n_{2}<n_{1}$
- The high refractive index is called the core
- The low refractive index is called the cladding

A planar dielectric waveguide has a central rectangular region of higher refractive index n_{1} than the surrounding region which has a refractive index n_{2}. It is assumed that the waveguide is infinitely wide and the central region is of thickness $2 a$. It is ilhminated at one end by a monochromatic light source.
© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

- Only a very thin light beam with a diameter much less than the slab thickness, $2 a$, will make it into the dielectric slab to reflect off of the cladding.
- The remaining light used to illuminate the structure is "lost"
- Also note that for ease of calculation we will use light that enters the slab waveguide from another medium of index n_{1}.
- Mode coupling is required to assess the amount of light entering the waveguide from a generic medium of n that will reflect and transmit off the surface of $n 1$ at the front of the slab

Wave Propagation in Slab Waveguides

- If TIR occurs, then light entering the waveguide easily propagates along in a zigzag fashion
- The zigzag pattern generated by reflection propagates in phase leading to constructive interference within the waveguide
- Light entering the waveguide or reflecting out of phase generates destructive interference and cancels out the propagation amplitude of the EM field.
- Let us suppose that $\mathrm{k} 1=\mathrm{kn}_{1}=2 \pi \mathrm{n}_{1} / \lambda$
- For constructive interference, the phase difference between the two points A and C in the diagram below must be multiples of 2π
- For constructive interference:

$$
k_{1}[2 d \cos \theta]-2 \phi=2 \pi m \cdots ; d=2 a
$$

Two arbitrary waves 1 and 2 that are initially in phase must remain in after reflections. Otherwise the two will interfere destructively and ca other.
© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Waveguide Condition

- If we divide the equation for constructive interference by 2 and rewrite, then we have the waveguide condition:

$$
\frac{2 \pi n_{1}(2 a)}{\lambda} \cos \theta_{m}-\phi_{m}=\pi m
$$

- Where the constructed phase of the wave packet, $\phi \mathrm{m}$ is a function of the incidence angle, $\theta \mathrm{m}$
- This condition is generic for different waveguide shapes, incidence angles, and incident wavelengths.
- Remember: both rays must initially start in phase with one another and remain so after reflection or they will destructively interfere and prevent propagation
- Field in the waveguide

$$
E=2 E_{m}(y) \cos \left(\omega t-\left(k_{1} \sin \theta_{m}\right) z\right)
$$

Interference of waves such as 1 and 2 leads to a standing wave pattern along the direction which propagates alongz.

- $E_{m}(y)$ is the mode of propagation

Allowed modes in the waveguide

The electric field patterns of the first three modes $(m=0,1,2)$ traveling wave along the guide. Notice different extents of field penetration into the cladding.

Single and Multimode Waveguides

- By imposing both TIR and the waveguide condition on the solution for waveguide propagation, we find that only a certain number of modes are allowed in the waveguide
- From

$$
\frac{2 \pi n_{1}(2 a)}{\lambda} \cos \theta_{m}-\phi_{m}=\pi m
$$

we can find an expression for $\sin \left(\theta_{m}\right)$

- Applying the TIR condition,

$$
\sin \theta_{m}>\sin \theta_{c}
$$

- The mode number, m, must satisfy

$$
m \leq \frac{(2 V-\phi)}{\pi}
$$

- The V-number, V, also called the normalized thickness or normalized frequency is defined by

$$
V=\frac{2 \pi a}{\lambda} \sqrt{n_{1}^{2}-n_{2}^{2}}
$$

- Note: the term thickness is more common for planer waveguides
- The $2 a$ in the term refers to the waveguide geometry, and thus will change with the shape of the waveguide
- Question how does one get V such that only a single mode of propagation exists?
- At grazing incidence $\theta_{\mathrm{m}}=90^{\circ}$ and $\phi_{\mathrm{m}}=\pi$
- Solving for V as a function of m
- At $\mathrm{V}<\pi / 2$ only the $\mathrm{m}=0$ mode propagates
- At $\mathrm{V}=\pi / 2$ gives the free space cut-off wavelength. Above this wavelength, only the single mode propagation exists

TE and TM Modes

- All discussion up to now have assumed a propagating wave
- However we have two types of propagating waves that generate different phase changes upon reflection and refraction
- So let us now consider TE modes perpendicular to the cross section of the slab: $\mathrm{E}_{\perp}=\mathrm{E}_{\mathrm{x}}$
- And TM modes parallel to the cross section of the slab: $\mathrm{E}_{\| \mid}=\mathrm{E}_{\mathrm{y}}+\mathrm{E}_{\mathrm{z}}$
- It is interesting that Ez exist along the direction of propagation. It is apparent that Ez is a propagating longitudinal electric field. In free space this is IMPOSSIBLE for such a field to exists, however in a waveguide the interference allows such a phenomenon
- Note that the same occurs for B in the TE mode
- Because the phase change that accompanies TIR depends on polarization yet is negligible for $n_{1}-n_{2} \ll 1$, the waveguide condition and the cut-off condition can be taken to be identical for both TE and TM

Example : a number of modes

Planar dielectric waveguide : $a=50 \mu \mathrm{~m}, n_{1}=1.490, n_{2}=1.470$ and $\lambda=1 \mu \mathrm{~m}$
Determine the highest mode m supported by the waveguide and how many modes can be supported by the waveguide?

Phase shift due to total internal reflection

vovt
Reflection coefficients
θ_{i} (degrees)
(c)

$$
\begin{aligned}
& T M: \tan \left(\frac{\Delta \phi_{\|}}{2}\right)=\frac{\sqrt{\sin ^{2} \theta_{i}-n^{2}}}{n^{2} \cos \theta_{i}} \\
& T E: \tan \left(\frac{\Delta \phi_{\perp}}{2}\right)=\frac{\sqrt{\sin ^{2} \theta_{i}-n^{2}}}{\cos \theta_{i}} \\
& \text { where } n=\frac{n_{2}}{n_{1}}
\end{aligned}
$$

Waveguide Modes

- Planer waveguide: $2 \mathrm{a}=20 \mathrm{um}, \mathrm{N} 1=1.455$, $\mathrm{N} 2=1.440, \lambda=900 \mathrm{~nm}\left(9 \times 10^{-7} \mathrm{~m}\right)$
- Using waveguide equation and TIR for the TE mode:

$$
\tan \left(\frac{1}{2} \phi_{m}\right)=\frac{\sqrt{\sin ^{2} \theta_{m}-\left(n_{2} / n_{1}\right)^{2}}}{\cos \theta_{m}}
$$

- Using a graphical solution, find the angles for all of the modes.
- Consider:
$k_{1}\left[2 a \cos \theta_{m}\right]-\phi_{m}=\pi m$
$\tan \left(a k_{1} \cos \theta_{m}-\pi m / 2\right)=\frac{\sqrt{\sin ^{2} \theta_{m}-\left(n_{2} / n_{1}\right)^{2}}}{\cos \theta_{m}}=f(\theta)$
- The left hand side reproduces itself for $m=0,2,4, \ldots$ and becomes a cot function for odd m

Note:

$$
\theta_{c}=\arcsin \left(\frac{n_{2}}{n_{1}}\right)
$$

Modes in a planar dielectric waveguide can be determined by plotting the LHS and the RHS of eq. (11).

- 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

Skin depth of wave into n_{2}

$$
\begin{aligned}
& \alpha_{m}=\frac{2 \pi n_{2}}{\lambda} \sqrt{\left(\frac{n_{1}}{n_{2}}\right)^{2} \sin ^{2} \theta_{m}-1} \\
& \delta_{m=0}=1 / \alpha_{m=0}=6.91 \times 10^{-7} \mathrm{~m} \\
& \delta_{m=9}=1 / \alpha_{m=9}=38.3 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

Reflection and transmission of a threedimensional wave at a plane boundary

$$
\begin{aligned}
& E_{i}=A_{i} e^{i\left(\omega t-\vec{k}_{i} \cdot \vec{r}\right)}=A_{i} e^{i\left[\omega t-k_{i}(x \sin \theta+z \cos \theta)\right]} \\
& E_{r}=A_{r} e^{i\left(\omega t-\vec{k}_{r} \cdot \vec{r}\right)}=A_{r} e^{i\left[\omega t-k_{i}(x \sin \theta-z \cos \theta)\right]} \\
& E_{t}=A_{t} e^{i\left(\omega t-\vec{k}_{t} \cdot \vec{r}\right)}=A_{t} e^{i\left[\omega t-k_{t}(x \sin \phi+z \cos \phi)\right]}
\end{aligned}
$$

where $\theta=\theta^{\prime}, k_{i}=k_{r}$ and $Z_{1}>Z_{2}$

Total internal reflection and evanescent waves

- Consider the propagation of an electromagnetic wave across the boundary between dielectric into air.
- Total internal reflection can take place but boundary conditions still require a transmitted wave known as the evanescent or surface wave.
-The wave propagates in the x direction but its amplitude decays exponentially with z.
crital angle $\theta_{c}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)=\sin ^{-1} n_{r}$; where $n_{1}>n_{2}$

(a)

(c)

(b)

(d)

Transmitted wave as the evanescent wave

- Consider in terms of the transmitted electromagnetic wave that satisfies the boundary condition $E_{\mathrm{i}}+E_{\mathrm{r}}=E_{\mathrm{t}}$.

$$
E_{t}=A_{t} e^{i\left(\omega t-\vec{k}_{t} \cdot \vec{r}\right)}=A_{t} e^{i\left[\omega t-k_{t}(x \sin \phi+z \cos \phi)\right]}
$$

-Because

$$
\cos ^{2} \phi=1-\sin ^{2} \phi=1-\sin ^{2} \theta / n_{r}^{2}
$$

$$
\therefore k_{t} \cos \phi= \pm k_{t}\left(1-\sin ^{2} \theta / n_{r}^{2}\right)^{\frac{1}{2}}
$$

-Which for $\theta>\theta_{\mathrm{c}}$ gives $\sin \theta>n_{\mathrm{r}}$ so that

$$
k_{t} \cos \phi= \pm i k_{t}\left(\frac{\sin ^{2} \theta}{n_{r}^{2}}-1\right)^{\frac{1}{2}}= \pm i \beta
$$

- From the last slide $k_{t} \cos \phi= \pm i k_{t}\left(\frac{\sin ^{2} \theta}{n_{r}^{2}}-1\right)^{\frac{1}{2}}= \pm i \beta$
- We also have

$$
k_{t} \sin \phi=k_{t} \sin \theta / n_{r}
$$

- The transmitted wave becomes

Absorption

$$
E_{t}=A_{t} e^{i\left(\omega t-\vec{k}_{t} \cdot \vec{r}\right)}=A_{t} e^{i\left[\omega t-k_{t}(x \sin \phi+z \cos \phi)\right]}
$$

$$
=A_{t} e^{i\left[\omega t-x\left(k_{t} \sin \phi\right)-z\left(k_{t} \cos \phi\right)\right]}
$$

in z direction

$$
=A_{t} e^{i\left[\omega t-x\left(k_{t} \sin \theta / n_{r}\right)-z(\pm i \beta)\right]}
$$

Propagation in x direction

Only negative sign of the amplitude exponential function has a physical meaning.

Evanescent wave

$$
E_{t}=A_{t} e^{-\beta z} e^{i\left[\omega t-x\left(k_{t} \sin \theta / n_{r}\right)\right]}
$$

- The disturbance travels in the x direction along the interface.
- The penetration depth depends on the refractive indices, the incident angle and the wavelength of the EM wave.

Frustrated total internal reflection

- If only a very thin air gap exists between two glass blocks, it is possible for energy to flow across the gap allowing the wave to propagate in the second glass block.
- The process is called frustrated total internal reflection.

Homework \# 9

Problem 9.7

An electromagnetic wave (\mathbf{E}, \mathbf{H}) propagates in the x-direction down a perfectly conducting hollow tube of arbitrary cross section. The tangential component of \mathbf{E} at the conducting walls must be zero at all times.

Show that the solution $\mathbf{E}=E(y, z) \mathbf{n} \cos \left(\omega t-k_{x} x\right)$ substituted in the wave equation yields

$$
\frac{\partial^{2} E(y, z)}{\partial y^{2}}+\frac{\partial^{2} E(y, z)}{\partial z^{2}}=-k^{2} E(y, z)
$$

where $k^{2}=\omega^{2} / c^{2}-k_{x}^{2}$ and k_{x} is the wave number appropriate to the x-direction, \mathbf{n} is the unit vector in any direction in the (y, z) plane.

Problem 9.8

If the waveguide of Problem 9.7 is of rectangular cross-section of width a in the y-direction and height b in the z-direction, show that the boundary conditions $E_{x}=0$ at $y=0$ and a and at $z=0$ and b in the wave equation of Problem 9.7 gives

$$
E_{x}=A \sin \frac{m \pi y}{a} \sin \frac{n \pi z}{b} \cos \left(\omega t-k_{x} x\right)
$$

where

$$
k^{2}=\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)
$$

Problem 9.9

Show, from Problems 9.7 and 9.8 , that the lowest possible value of ω (the cut-off frequency) for k_{x} to be real is given by $m=n=1$.

