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Plane wave representation in two and 
three dimensions
•Basically, the plane wave representation moving in one dimension may be 
written as

•Consider the argument representing the phase ;i.e., t – kx, the term kx illustrates 
the phase shift due to the wave displacement along the propagation direction 
where the wave number k = 2/.

•What should this term be modified to if the plane wave propagates in two or 
three dimensions?

•To modify this term, the direction cosine has to be discussed.!
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Direction cosine
•By definition, the direction cosine or directional cosine of a vector is a cosine of the 
angle between the vector and the three coordinate axes.
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• According to the left picture, the direction 

cosine of the wave vector k are composed of

cos  = k1/k and cos  = k2/k

• Cos  and cos  are represented by l and m, 

respectively.

• “lx + my = p” represents the line equation in 

two dimensions where p is the perpendicular 

distance from the line to the origin.






Modified phase representation
•The phase difference  between the origin and a given line as seen from the 
figure in previous slide can be written as
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Plane wave representation in 2 and 3 D
•Therefore, the plane wave representation moving in 2 and 3 D can be written as
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Equation of motion in two dimensions 
: Rectangular membrane

•Consider the rectangular membrane 
of a uniform membrane vibrating in 
the z-direction.

•Area of the membrane = xy. The 
mass of the membrane is given as   
xy. 

•Restoring forces acting on length x 
and y are given as T y  and T x

•The equation of motion for the 
membrane is found to be 
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Wave equation and corresponding wave function 
in two dimension : Rectangular membrane

•Wave function that satisfies the wave equation is given as

•The wave function represents the plane wave propagating in the xy plane. 
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Normal modes and the method of 
Separation of variables

•What we are interested here is the wave function of the standing waves on the 
rectangular membrane. 

•The standing waves will be called normal modes for the rectangular membrane.

•This can be found by introducing the boundary conditions at both sides of the 
rectangular membrane.

•However, to clarify the method, the analytical procedure will begin with one 
dimensional standing wave happening on  the string fixed at both ends.
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Wave function for one-dimensional case 
with boundary conditions

•The boundary conditions for the string fixed at both ends: displacement  = 0 at x = 
0 and x = L at all times.
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• The wave equation is given as

• A solution of the equation can be 

written as the product of two terms

 =  X(x)T(t).

• By using the method of separation of 

variable, 
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Wave function of standing wave 



Problem 
Determine the wave function and the normal modes of vibration for the 
standing wave of a string fixed at both ends using the method of separation of 
variable.

Given that the boundary conditions :  = 0 at x = 0 and x = L  at all times.
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Wave function for one-dimensional 
case without boundary conditions

•With the method of separation of variable, the solution of the following wave function

are found to be 

•A familiar form of the above function may be written as

•or
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Wave function for two-dimensional case

•Under this circumstance, the wave equation is given as

•Now, the function  may be written as the product of X(x)Y(y)T(t).

•With the method of separation of variable,  a solution of the differential equation 
may be written as

•Also the solution may be given as
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Wave function for three-dimensional case

•Under this circumstance, the wave equation is given as

•Now, the function  may be written as the product of X(x)Y(y)Z(z)T(t).

•With the method of separation of variable,  a solution of the differential equation 
may be written as

•Also the solution may be given as
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Normal modes in two dimensions on a 
rectangular membrane 

•Consider waves proceed in a direction k on the 
rectangular membrane of sides a and b.

•Separation distance between each dotted line is  /2.

•Conditions for the existence of standing waves are       
a =n1AA’ and b = n2BB’, where n1 and n2 are integers.

•From the figure
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• From the previous slide,

• This gives 

• Or 

• The normal mode (vibrating frequency) of the vibrating rectangular membrane can be written as 
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Wave function in two dimensions on a 
rectangular membrane 
•Recall the general wave function in 2 D,

•For a  particular wave function that satisfies the rectangular membrane, the 
boundary conditions have to be considered.

•Boundary conditions : z = 0 at x = 0 and a; z =0 at y = 0 and b.

•So that 
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Fundamental vibration frequency and 
conditions for nodal lines
•Recall the general normal mode frequency,

•The fundamental vibration frequency is given by n1 = n2 = 1,

•Conditions for nodal lines or zero displacement in the general mode (n1n2) 
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Some normal modes 

on a rectangular 

membrane



19http://www.acs.psu.edu/drussell/Demos/MembraneSquare/Square.html

The (1,1) Mode The (2,2) ModeThe (1,2) Mode
The (2,1) Mode

Identify the normal modes on this rectangular membrane

X

Y

For more animation please visit
https://www.acs.psu.edu/drussell/Demos/rect-membrane/rect-mem.html



Degenerate mode for a square membrane
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The (2,1) and (1,2) Modes

The (3,1) and (1,3) Modes

http://www.acs.psu.edu/drussell/Demos/MembraneSquare/Square.html



Waveguides
•Now, consider a 2D wave propagating in a direction k in the xy plane along a membrane of 
width b stretched under a tension T between two long rigid rods which present and infinite 
impedance to the wave.
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The displacement z is given 

by the superposition of the 

incident and reflected waves 

(why?),
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Displacement of the wave on the membrane

•Recall the superposition from the previous slide,

•Consider the boundary conditions :z = 0 at y= 0 and y =b  (the positions of infinite impedance).

•This gives     A2 =  -A1 and   sink2b = 0 which leads to   k2 = n/b.

•Therefore, the displacement of the wave on the membrane given by the real part becomes

•The function represents a wave travelling along the x direction with varying amplitude 
along y direction.
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What is the phase velocity of the 
travelling wave?
•Consider the travelling wave on the membrane from previous slide

•The phase velocity of the wave is given as 

•Because                           , this can be rewritten as

•Since k1 must be real for the wave to propagate, thus 
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Allowed frequencies of travelling wave

•From the condition                            and 

•The allowed frequencies of travelling wave propagating along the membrane is 
found to be

•Where  n defines the mode number in the y direction and the membrane acts as a 
waveguide.    
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This also represent a cut-off frequency for each 

mode number n indicating that the waveguide 

acting as a frequency filter.



Waveguide membrane

Variation of amplitude with y direction for two dimensional wave propagating 
along the membrane. Normal modes (n = 1, 2 and 3 are shown) are set up along 
any axis bounded by infinite impedances.
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Example : a number of modes 
Planar dielectric waveguide : a = 50 m, n1 = 1.490, n2 = 1.470 and  = 1 m

Determine the highest mode m supported by the waveguide and how many modes 
can be supported by the waveguide?
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Phase shift due to total internal reflection

𝑇𝑀: tan
𝜙
2

=
𝑠𝑖𝑛2𝜃𝑖−𝑛

2

𝑛2 cos 𝜃𝑖

𝑇𝐸: tan
𝜙⊥
2

=
𝑠𝑖𝑛2𝜃𝑖−𝑛

2

cos 𝜃𝑖

𝑤ℎ𝑒𝑟𝑒 𝑛 =
𝑛2

𝑛1

33https://slideplayer.com/slide/4645556/
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Reflection and transmission of a three-
dimensional wave at a plane boundary
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Total internal reflection
and evanescent waves

•Consider the propagation of an electromagnetic 
wave across the boundary between dielectric 
into air.

•Total internal reflection can take place but 
boundary conditions still require a transmitted 
wave known as the evanescent or surface 
wave.

•The wave propagates in the x direction but its 
amplitude decays exponentially with z.
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Transmitted wave as the evanescent wave

•Consider in terms of the transmitted electromagnetic wave that satisfies the 
boundary condition Ei + Er = Et.

•Because 

•Which for  > c gives sin > nr so that

37

( ) ( )sin cost t
i t k r i t k x z

t t tE A e A e
   −  − +  = =

2 2 2 2cos 1 sin 1 sin rn  = − = −

( )
1
22 2cos 1 sint t rk k n  =  −

1
2 2

2

sin
cos 1t t

r

k ik i
n


 

 
=  − =   

 



38

• From the last slide

• We also have  

• The transmitted wave becomes
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Only negative sign of the amplitude exponential function has a physical meaning. 
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Propagation in 

x direction

Absorption 

in z direction

https://www.osa-opn.org/home/articles/volume_20/issue_2/features/reflections_on_total_internal_reflection/

https://www.osa-opn.org/home/articles/volume_20/issue_2/features/reflections_on_total_internal_reflection/


Evanescent wave
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https://www.youtube.com/watch?v=KYwacKlfEpU

• The disturbance travels in the 

x direction along the interface.

• The penetration depth depends 

on the refractive indices, the 

incident angle and the 

wavelength of the EM wave.



Frustrated total internal reflection
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• If only a very thin air gap exists 

between two glass blocks, it is 

possible for energy to flow across 

the gap allowing the wave to 

propagate in the second glass 

block.

• The process is called frustrated 

total internal reflection.

https://www.youtube.com/watch?v=fOqF6t6A4O4



Homework # 9
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