Waves In more than
one dimension
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Plane wave representation in two and
three dimensions

Basically, the plane wave representation moving in one dimension may be
written as E=E, el(a)t—kx)

*Consider the argument representing the phase ;i.e., wt — kX, the term kx illustrates
the phase shift due to the wave displacement along the propagation direction
where the wave number k = 2rt/A.

*What should this term be modified to if the plane wave propagates in two or
three dimensions?

*To modify this term, the direction cosine has to be discussed.!



Direction cosine

By definition, the direction cosine or directional cosine of a vector is a cosine of the
angle between the vector and the three coordinate axes.

« According to the left picture, the direction

Ff1
¥ K2k I=— Crest cosine of the wave vector k are composed of
k, ———— Trough cos a = k,/k and cos B = k,/k
ki m=—= « Cos a and cos B are represented by | and m,
I+ my=p=ct respectively.
K- r=kX+ky = kp * “IX+ my =p” represents the line equation in
two dimensions where p is the perpendicular

¥ distance from the line to the origin.




Modified phase representation

*The phase difference ¢ between the origin and a given line as seen from the
figure in previous slide can be written as

¢ = %(path difference) = 27” p= 2; (Ix+my)

:%((cosa)wr(cosﬂ)y)
:k1X+k2y
=k -r; where k =k +Kk,], F=xI+Y]

and k°=k{ +ks

2
S = f(k1x+k2y)



Plane wave representation in 2 and 3 D

*Therefore, the plane wave representation moving in 2 and 3 D can be written as

E_ EOei(a)t—(klx+k2y)) D

i(a)t—(klx+k2y+k3z))_ D

E:Eoe




Equation of motion In two dimensions
. Rectangular membrane

*Consider the rectangular membrane
of a uniform membrane vibrating in
the z-direction.

Tox
i *Area of the membrane = oxdy. The
z 4} 1oy - mass of the membrane is given as
y / Ny POXBy.
Toy
rox i ( -Restoring forces acting on length &x
y

and oy are givenas T 8y and T ox

*The equation of motion for the
X membrane is found to be
2 2 2
T5y8—§5x+T5xa—§5y :p5x5ya—zz
OX oy ot
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Wave equation and corresponding wave function
In two dimension : Rectangular membrane

0°z 9’z potz 1 6°z
2t 2= 2 T 2 g2
oxc oy- T ot ¢ ot

*Wave function that satisfies the wave equation is given as
, Aei[a)t—(k-r)} _ Aei[a)t—(klx+k2y)]

where k? =k{ +ks

*The wave function represents the plane wave propagating in the xy plane.




Normal modes and the method of
Separation of variables

*What we are interested here is the wave function of the standing waves on the
rectangular membrane.

*The standing waves will be called normal modes for the rectangular membrane.

This can be found by introducing the boundary conditions at both sides of the
rectangular membrane.

*However, to clarify the method, the analytical procedure will begin with one
dimensional standing wave happening on the string fixed at both ends.



Wave function for one-dimensional case
with boundary conditions

*The boundary conditions for the string fixed at both ends: displacement ¢ =0 at x =
0 and x = L at all times.
¢ _10%

OX? - c® ot? ¢ L

/| .
A solution of the equation can be / 0 \,

Fundamental Mode: Standing Wave on String

« The wave equation is given as

written as the product of two terms ? e T - §
¢ = XO)T(H). | T i 0 Ani
* By using the method of separation of
variable, :
Sin kx cos ckt
= sin kysinckt €@ Wave function of standing wave



Problem

Determine the wave function and the normal modes of vibration for the
standing wave of a string fixed at both ends using the method of separation of

variable.
Given that the boundary conditions: ¢ =0atx =0 and x = L at all times.




Wave function for one-dimensional
case without boundary conditions

*With the method of separation of variable, the solution of the following wave function

0% 1 0%z
ox?  c? ot?
are found to be p=X(X)T(t)= ApTIkXgtickt

A familiar form of the above function may be written as

= Aei(ckt—kx) _ Aei(a)t—kx)

sSin Sin
*0r d=A }kx }ckt

COS COS



Wave function for two-dimensional case

*Under this circumstance, the wave equation Is given as
0’ 0% 1 0%
7 a2 2l
oX~ oy~ c¢° ot
*Now, the function ¢ may be written as the product of X(X)Y (y)T(t).

*With the method of separation of variable, a solution of the differential equation
may be written as

¢ = AetaXetlkaY ikt \yhere k2 = k2 4 k3

_Asin y sSin y sSin »
*Also the solution may be given as ¢ = COS 1Xcos 2ycos ‘



Wave function for three-dimensional case

*Under this circumstance, the wave equation Is given as
0’ 0% 0% 1 0%
28 oA 2 i
ox® oy~ o0z c° ot
*Now, the function ¢ may be written as the product of X(X)Y (y)Z(z)T(t).

*With the method of separation of variable, a solution of the differential equation
may be written as

b = Aeilklxeilkzyei|k3zeilckt; where k2 _ k12 n k22 n k32

y Asin y Sin y Sin y Zsin okt
. ; - — X
Also the solution may be given as cos| ¥ cos Zycos 3% cos



Normal modes In two dimensions on a

rectangular membrane

*Consider waves proceed in a direction k on the
rectangular membrane of sides a and b.

*Separation distance between each dotted line is A/2.

Conditions for the existence of standing waves are
a =n,AA’ and b = n,BB’, where n, and n, are integers.

*From the figure

A Ak _A271 =«
2cosa/ 2k 2 Ak K

AA' =

From definition of the
directional cosine

n, BB" = n,A/2 cosfi

b:
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« From the previous slide, k1=1—,k2:2—
a b
2 2 .2
o 4r Y n
+ This gives k2=k12+k22=?=712 12+b§
a
2 2
e Or 2 _\/nl n2
T2 T2
A a“~ b

The normal mode (vibrating frequency) of the vibrating rectangular membrane can be written as

C n12 n% o T
V=_o =t 2;Wherec = —
2\Va b P




Wave function in two dimensions on a
rectangular membrane

*Recall the general wave function in 2 D,

Sin Sin Sin
Direction of displacement ﬂ@ A ki X Koy ckt
COS COS COS

*For a particular wave function that satisfies the rectangular membrane, the
boundary conditions have to be considered.

*Boundary conditions:z=0atx=0anda;z=0aty =0and b.

*So that
. MaX . N
7 = Asin W g Moy
a

sin ckt



Fundamental vibration frequency and
conditions for nodal lines

*Recall the general normal mode frequency,

n12 n§ T
V= 2+2
ac b |4p \/(1 1)T
V= +

4p

The fundamental vibration frequency is given by n, =n, = 1, 3
Conditions for nodal lines or zero displacement in the general mode (n,n,)

X =0, a’ Za,..., a

2b2




(1,1) (2,1) (3,1)
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Some normal modes
on a rectangular
membrane
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(3.2) (3,3) (2.4)
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Identify the normal modes on this rectangular membrane

For more animation please visit
https://www.acs.psu.edu/drussell/Demos/rect-membrane/rect-mem.html




Degenerate mode for a square membrane

The (2,1) and (1,2) Modes

G2, 13+41, 2% 62, 13-01, 23
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Waveguides

*Now, consider a 2D wave propagating in a direction k in the xy plane along a membrane of

width b stretched under a tension T between two long rigid rods which present and infinite
Impedance to the wave.

nfinite The displacement z is given
Impedance ., .

y=b P by the superposition of the
Incident and reflected waves

k k . (why?),
/4; , Alei[a)t—(klx+k2y)]

N infinite + Azei[wt_( kyx=k y)]

impedance




Displacement of the wave on the membrane

-Recall the superposition from the previous slide, z = A&ei[“’t_(kl"*kzy)] n Azei[wt—(klx—sz)]
*Consider the boundary conditions :z =0 at y= 0 and y =b (the positions of infinite impedance).

*Thisgives A, = -A; and sink,b =0 which leads to k, = n=/b.
*Therefore, the displacement of the wave on the membrane given by the real part becomes

/ =

Varying amplitude Travelling wave

*The function represents a wave travelling along the x direction with varying amplitude
along y direction.



What Is the phase velocity of the
travelling wave?

*Consider the travelling wave on the membrane from previous slide

z =+2A sink,ysin (ot —k;x)

*The phase velocity of the wave is given as

w k
Up (—) v; where v 1s the velocity of a wave on an infinitely membrane

= k—l = kl
2 1,2 12 : n‘z?
"Because  k“ =K{ +kj , this can be rewritten as k% = k? — .
b
2 2

n-mw

b2

-Since k; must be real for the wave to propagate, thus k2 >



Allowed frequencies of travelling wave

N N

nN°r*

b2

-From the condition k2 > and k=

@
v
*The allowed frequencies of travelling wave propagating along the membrane is

found to be
nv This also represent a cut-off frequency for each
V2 b _ mode number n indicating that the waveguide
acting as a frequency filter.

*Where n defines the mode number in the y direction and the membrane acts as a
waveguide.



z =+2Asink, ysin (@t —k;x)

Waveguide membrane =
/ This term expresses the

y=>b variation of amplitudes
\ / across the y direction.

n=1 n=2 n=23 —» X
e by i 37y
/ :For example; n=3,..sink,y :sinTI
| I
y=0 jat =0,—-,—,b;sink,y=0 :
- | !

Variation of amplitude with y direction for two dimensional wave propagating
along the membrane. Normal modes (n =1, 2 and 3 are shown) are set up along
any axis bounded by infinite impedances.



Slab Waveguides

Light =/ =—7 Lizh
*  Consider a dielectric slab of thickness 2a A
and refractive index ny Light ===% r =7 ¢ Light
. . . Ha
*+  Let the dielectric be sandwiched between J/ =
two semi-infinite regions of index n, =M
. dielectric wavegade has a central rectangular re of
Note that My <Ny tn#ﬁ'acm‘e mdex 7, than the mrmmhugrﬁgﬂﬂuh%:!]:nhas
»  The high refractive index is called the core a refractive mdex #;. It s assumed that the wavegude 5
o ] mfmitely wide and the central region 1s of thickmess 2 a Itis
*  The low refractive index is called the ilnminated at one end by a monochromatic light source.
cladding © 1999 S.0. Kasap, Optoelectronicz (Prentice Hall)

*  Only a very thin light beam with a diameter much less than the slab thickness, 2a, will
make it into the dielectric slab to reflect off of the cladding.

*  The remaining light used to illuminate the structure is “lost”

*  Also note that for ease of calculation we will use light that enters the slab waveguide
from another medium of index n,.

Optoelectronics & Photonics: Principles & Practices

by Safa O. Kasap

* Mode coupling is required to assess the amount of light entering the waveguide from
a generic medium of n that will reflect and transmit off the surface of n1 at the front
of the slab

- e 00




Wave Propagation in Slab Waveguides

If TIR occurs, then light entering the waveguide easily propagates along in a zigzag fashion

The zigzag pattern generated by reflection propagates in phase leading to constructive
interference within the waveguide

Light entering the waveguide or reflecting out of phase generates destructive interference and
cancels out the propagation amplitude of the EM field.

Let us suppose that k1 = kn, = 27n,/A

For constructive interference, the phase difference between the two points A and Cin the
diagram below must be multiples of 2n

*  For constructive interference:

i, [Zd COS 6’]—2@: 27mn f:d=2a

Only certain angles of 8 and ¢
satisfy this equation for a given
integer multiple, m (mode number)

However, ¢ depends on 6 and the

polarization state of the incident

Waves Two arbitrary waves 1 and 2 that are mitially m phase must remam m
. after reflections. Otherwise the two will mterfere destructvely and ca
*  Therefore for each m, there will be other.
- 000

_ only 1 allowable 8_ and ¢_ © 1999 S.0. Kasap. Optoelectronics (Prentice Hall) _

Optoelectronics & Photonics: Principles & Practices

by Safa O. Kasap




Waveguide Condition

+  |fwe divide the equation for
constructive interference by 2 and
rewrite, then we have the waveguide
condition:

2w, (2a)

cos@ —¢ =mn

*  Where the constructed phase of the
wave packet, dm is a function of the

. Two arbiirary waves 1 and 2 that are mifially m phase must remam m
incidence angle, Bm after reflections. Otherwise the two will interfere destructively and c:

«  This condition is generic for different ~ ©ther.
waueguide shapes, incidence angles, € 19990 5.0. Kasap, Opfoelectronics (Prentice Hall)

and incident wavelengths, y n,

* Remember: both rays must initially start
in phase with one another and remain
so after reflection or they will
destructively interfere and prevent
propagation Guide center -

Optoelectronics & Photonics: Principles & Practices

by Safa O. Kasap

+  Field in the waveguide

_ . Interference of waves such as 1 and 2 keads to a standmg wave pattern along the
E= EEH (y) Ccos [:t'l?'f - (JEI s11 E,,, }E} direc tion which propagates alongz.

E.[y) is the mode of propagation  gig9950. Kasap Optoslectronics (Prentice Hall)




Field of evanescent wave )
(exponential decay) \ g
H: g
a
Field of guided wave E(y,z0) =E(y)cos(ar - G7) o3
El) - > Light %
m=10 fiy =
O
n, § =
a
&
The electric field pattern of the lowest mode travelmg wave along the =
guide. This mode has m = 0 and the lowest & It is often referred toasth 7 S
glazmg mcidence ray. It has the lughest phase velocity along the gada E
£ 1999 5.0. Kasap. Opioelecironics (Prentice Hall) "y /I Cllﬂlilf/‘ ;
o
C =1 A (40]
E6) m=10 m=1 Core Dm ’ 2 § %
R L ssnsana S rhmgss s ssanassnf sn e m henn a
"y l § X
. 46 O
", Cladding 2 = qc_fg
2w
S
_ O o
The electric field patterns of the first three modes (m =0, 1, 2)
travelmg wave along the puide. Notice different extents of field
penetration mto the cladding.

O
- 2 1999 5.0, Kasap. Cproelecrronics (Prentice Hall) ﬁ



Single and Multimode Waveguides

* By imposing both TIR and the waveguide + The V-number, V, also called the normalized

condition on the solution for waveguide thickness or normalized frequency is defined
propagation, we find that only a certain by
number of modes are allowed in the 2 2 2
. V= 1, — 11,
waveguide
*  From

* Note: the term thickness is more common for
planer waveguides

2m,(2a)

cos@, —¢, = mn
* The 2ain the term refers to the waveguide

we can find an expression for sin(8_) geometry, and thus will change with the

*  Applying the TIR condition, shape of the waveguide

Optoelectronics & Photonics: Principles & Practices

Q.
. : *» Question how does one get V such that only a %
S1I 9,—.” >SN ﬂc single mode of propagation exists? X
- o T —qne - @)
*  The mode number, m, must satisfy At grazing incidence 8, =90° and ¢, =1 Ric
Y — Solving for V as a function of m 3
m < (‘“ - g‘é) — AtV <n/2 only the m=0 mode propagates 2
Fra — AtV =1n/2 gives the free space cut-off

wavelength, Above this wavelength, only

0] . N "
- the single mode propagation exists _




TE and TM Modes

All discussion up to now have assumed a propagating wave

However we have two types of propagating waves that generate different phase changes
upon reflection and refraction

So let us now consider TE modes perpendicular to the cross section of the slab: E,=E,
And TM modes parallel to the cross section of the slab: k|| = E, +E,

— Itis interesting that Ez exist along the direction of propagation. It is apparent that Ez is a
propagating longitudinal electric field. In free space this is IMPOSSIBLE for such a field
to exists, however in a waveguide the interference allows such a phenomenon

— Note that the same occurs for B in the TE mode

Because the phase change that accompanies TIR depends on polarization yet is negligible for
ny-n,<<1, the waveguide condition and the cut-off condition can be taken to be identical for
both TE and TM

(a) TEmode (b) TM mode

x (mto paper)

Possible modes can be classified in terms of (a) transelectric field (TE
and (b) transmagnetic field (TM). Plane of incidence 1s the paper.

1909 50,

Optoelectronics & Photonics: Principles & Practices

by Safa O. Kasap




Example : a number of modes

Planar dielectric waveguide : a = 50 um, n, = 1.490,n, =1.470 and A =1 um

Determine the highest mode m supported by the waveguide and how many modes
can be supported by the waveguide?




Phase shift due to total internal reflection

e Reflection coefficients

8, (degrees) A \/ . >
[0) sin“0;—n
0,1 TM: tan | =21 |=X=
4 2 n< cos 0;
o-~'§ - Ad n > n, .
ﬁg il 1S Aqu_ \/smzei—nz
TE:tan|— |=
P R e N 2 COS 9"
0 3066, 60 90
Op,(dcgrees) h — 2
wnere n =
@ = nq
.4.;: Ady n > n,
gé fFi i 1/
—— L=yt
0 0 6. 60 9%

0; (degrees)




Waveguide Modes

*  Planerwaveguide: 2a=20um, N1 = 1.455,
N2 =1.440, ». =900nm (9x107m)

*+  Using waveguide equation and TIR for the

TE mode: [ / 32
L 4fsm?6, —| ’7 |
' I -1|| ALY,

."1 .
tﬂﬂ| — |_
L2 cos &,
= Using a graphical solution, find the angles

for all of the modes.

* (Consider:
k,[lacnsﬂm]—;-‘}m = 7om

| o S
-1 -
||51t1' e, —| ™ t
\ \

cos &,

=f(&)

tan(ak, cos & —mm/2) =

*»  The left hand side reproduces itself for

m=0,2,4,... and becomes a cot function
for odd m
Note: 6, = arcsin| 2
: r

ak.cos 8 —ma2
1 ™

(e

10 -{}

3 : z e
q : H 87520
,\ t \Eﬁ.ﬂ"
0 | ~— > 6,
g2° g4- a6° 858" o0

Modes 1n a planar dielectric waveguide can be determined by
plotting the LHS and the RHS of eq. (11).

O 1999 5.0, Kasap, Opoelecronics (PFrentice Hall)

¢ \ 2
2..-' L] I | .
&'m = m' [ nl ":uil.'l:'.l.2 Hm _1
Skin depth of S A
waveinton, s _ =}/ =6.91x107m
H:m=l:'

S o= %{ =383 <107 m

Optoelectronics & Photonics: Principles & Practices

by Safa O. Kasap
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Reflection and transmission of a three-
dimensional wave at a plane boundary

Ei _ Aiei(a)t—ki-F) _ A‘
a)t—lzr-F)

£, = AR g
E, = Atei(a)t—lztf) _ A(ei[a)t—kt(xsin¢+zcos¢)]

ei[a)t_ki (xsin@+zcosd) |

ei[cot—ki (xsing-zcos6) |

where 8=6" k=k.and Z; > Z,




and evanescent waves )

*Consider the propagation of an electromagnetic ) 6 \ K
wave across the boundary between dielectric 6 |6,
Into alr.

Total internal reflection /

-Total internal reflection can take place but ny>
boundary conditions still require a transmitted
wave known as the evanescent or surface
wave.

*The wave propagates in the x direction but its x "
amplitude decays exponentially with z.

Ei =E:: Er =ED Ei }E{: Ei ='Elr

. . _1[n .
crital angle 6, =sin 1(—2] =SIn 1nr; where n; >n, © (@)

M



Transmitted wave as the evanescent wave

*Consider in terms of the transmitted electromagnetic wave that satisfies the
boundary condition E; + E, = E..

£ A[ei(a)t—lztf) B A[ei[a)t—kt(xsin¢+zcos¢)]
= —

cos? ¢ =1—sin? ¢ =1-sin? 6/n?
.. K cOs @ = £k (1—5in2 H/nrz)

*Which for 6> 6. gives sin@>n. so that
1

k, COS ¢ = ik, [5'”2 ‘ —1J —+ip

*Because X
2

Ny




N |~

Evanescent wave

2

",
* From the last slide K, cos¢:iikt£5m ‘9_1j =+if
nr

+ We also have K Sin ¢ = k; sin %
r
e The transmitted wave becomes
E, - A[ei(a)t_lzt-f) _ A[ei[a)t—kt(xsin¢+zcos¢)]

. " :Atei[a)t—x(kt sing)—z(k, cos¢) |
sorption

in z direction Mei[th(ktsinﬁ/nr )-2(+ip) | Propagation in
E, - Ate—ﬂzi[wt—X(ktsinﬁ/nr)] X direction
Only negative sign of the amplitude exponential function has a physical meaning.



https://www.osa-opn.org/home/articles/volume_20/issue_2/features/reflections_on_total_internal_reflection/

Evnescent wave £ = pe gl asingn )]

« The disturbance travels in the
X direction along the interface.

« The penetration depth depends
on the refractive indices, the
Incident angle and the
wavelength of the EM wave.




Frustrated total internal reflection

 If only a very thin air gap exists
between two glass blocks, it is
possible for energy to flow across
the gap allowing the wave to
propagate in the second glass
block.

» The process is called frustrated
total internal reflection.




Homework # 9

Problem 9.7
An electromagnetic wave (E, H) propagates in the x-direction down a perfectly conducting hollow
tube of arbitrary cross section. The tangential component of E at the conducting walls must be zero
at all times.

Show that the solution E = E(y.z) ncos (wf — k,x) substituted in the wave equation yields

D*E(v,z)  0*E(y,z)

= —k2E(v.2).
o a2 (:2)

where k? = w?/e? — k? and k, is the wave number appropriate to the x-direction, n is the unit vector
in any direction in the (y,z) plane.

Problem 9.8

If the waveguide of Problem 9.7 is of rectangular cross-section of width « in the y-direction and
height b in the z-direction, show that the boundary conditions £y =0 at y = 0 and ¢ and at z = 0 and
b in the wave equation of Problem 9.7 gives

. mmy | nmZ
L, =Asm sin
£}

cos (wr — kyx),

where

Problem 9.9
Show, from Problems 9.7 and 9.8, that the lowest possible value of w (the cut-off frequency) for ky to

_ be real is given by m =n = L. —



